Use LiteLLM AI Gateway with Aporia Guardrails
In this tutorial we will use LiteLLM Proxy with Aporia to detect PII in requests and profanity in responses
1. Setup guardrails on Aporia
Create Aporia Projects
Create two projects on Aporia
- Pre LLM API Call - Set all the policies you want to run on pre LLM API call
- Post LLM API Call - Set all the policies you want to run post LLM API call
Pre-Call: Detect PII
Add the PII - Prompt to your Pre LLM API Call project
Post-Call: Detect Profanity in Responses
Add the Toxicity - Response to your Post LLM API Call project
2. Define Guardrails on your LiteLLM config.yaml
- Define your guardrails under the guardrailssection and setpre_call_guardrailsandpost_call_guardrails
model_list:
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: openai/gpt-3.5-turbo
      api_key: os.environ/OPENAI_API_KEY
guardrails:
  - guardrail_name: "aporia-pre-guard"
    litellm_params:
      guardrail: aporia  # supported values: "aporia", "lakera"
      mode: "during_call"
      api_key: os.environ/APORIA_API_KEY_1
      api_base: os.environ/APORIA_API_BASE_1
  - guardrail_name: "aporia-post-guard"
    litellm_params:
      guardrail: aporia  # supported values: "aporia", "lakera"
      mode: "post_call"
      api_key: os.environ/APORIA_API_KEY_2
      api_base: os.environ/APORIA_API_BASE_2
Supported values for mode
- pre_callRun before LLM call, on input
- post_callRun after LLM call, on input & output
- during_callRun during LLM call, on input Same as- pre_callbut runs in parallel as LLM call. Response not returned until guardrail check completes
3. Start LiteLLM Gateway
litellm --config config.yaml --detailed_debug
4. Test request
Langchain, OpenAI SDK Usage Examples
- Unsuccessful call
- Successful Call
Expect this to fail since since ishaan@berri.ai in the request is PII
curl -i http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-npnwjPQciVRok5yNZgKmFQ" \
  -d '{
    "model": "gpt-3.5-turbo",
    "messages": [
      {"role": "user", "content": "hi my email is ishaan@berri.ai"}
    ],
    "guardrails": ["aporia-pre-guard", "aporia-post-guard"]
  }'
Expected response on failure
{
  "error": {
    "message": {
      "error": "Violated guardrail policy",
      "aporia_ai_response": {
        "action": "block",
        "revised_prompt": null,
        "revised_response": "Aporia detected and blocked PII",
        "explain_log": null
      }
    },
    "type": "None",
    "param": "None",
    "code": "400"
  }
}
curl -i http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-npnwjPQciVRok5yNZgKmFQ" \
  -d '{
    "model": "gpt-3.5-turbo",
    "messages": [
      {"role": "user", "content": "hi what is the weather"}
    ],
    "guardrails": ["aporia-pre-guard", "aporia-post-guard"]
  }'
5. Control Guardrails per Project (API Key)
Use this to control what guardrails run per project. In this tutorial we only want the following guardrails to run for 1 project (API Key)
- guardrails: ["aporia-pre-guard", "aporia-post-guard"]
Step 1 Create Key with guardrail settings
- /key/generate
- /key/update
curl -X POST 'http://0.0.0.0:4000/key/generate' \
    -H 'Authorization: Bearer sk-1234' \
    -H 'Content-Type: application/json' \
    -D '{
            "guardrails": ["aporia-pre-guard", "aporia-post-guard"]
        }
    }'
curl --location 'http://0.0.0.0:4000/key/update' \
    --header 'Authorization: Bearer sk-1234' \
    --header 'Content-Type: application/json' \
    --data '{
        "key": "sk-jNm1Zar7XfNdZXp49Z1kSQ",
        "guardrails": ["aporia-pre-guard", "aporia-post-guard"]
        }
}'
Step 2 Test it with new key
curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Authorization: Bearer sk-jNm1Zar7XfNdZXp49Z1kSQ' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "gpt-3.5-turbo",
    "messages": [
        {
        "role": "user",
        "content": "my email is ishaan@berri.ai"
        }
    ]
}'