Nvidia NIM
https://docs.api.nvidia.com/nim/reference/
tip
We support ALL Nvidia NIM models, just set model=nvidia_nim/<any-model-on-nvidia_nim> as a prefix when sending litellm requests
API Key
# env variable
os.environ['NVIDIA_NIM_API_KEY']
Sample Usage
from litellm import completion
import os
os.environ['NVIDIA_NIM_API_KEY'] = ""
response = completion(
    model="nvidia_nim/meta/llama3-70b-instruct",
    messages=[
        {
            "role": "user",
            "content": "What's the weather like in Boston today in Fahrenheit?",
        }
    ],
    temperature=0.2,        # optional
    top_p=0.9,              # optional
    frequency_penalty=0.1,  # optional
    presence_penalty=0.1,   # optional
    max_tokens=10,          # optional
    stop=["\n\n"],          # optional
)
print(response)
Sample Usage - Streaming
from litellm import completion
import os
os.environ['NVIDIA_NIM_API_KEY'] = ""
response = completion(
    model="nvidia_nim/meta/llama3-70b-instruct",
    messages=[
        {
            "role": "user",
            "content": "What's the weather like in Boston today in Fahrenheit?",
        }
    ],
    stream=True,
    temperature=0.2,        # optional
    top_p=0.9,              # optional
    frequency_penalty=0.1,  # optional
    presence_penalty=0.1,   # optional
    max_tokens=10,          # optional
    stop=["\n\n"],          # optional
)
for chunk in response:
    print(chunk)
Usage - embedding
import litellm
import os
response = litellm.embedding(
    model="nvidia_nim/nvidia/nv-embedqa-e5-v5",               # add `nvidia_nim/` prefix to model so litellm knows to route to Nvidia NIM
    input=["good morning from litellm"],
    encoding_format = "float", 
    user_id = "user-1234",
    # Nvidia NIM Specific Parameters
    input_type = "passage", # Optional
    truncate = "NONE" # Optional
)
print(response)
Usage - LiteLLM Proxy Server
Here's how to call an Nvidia NIM Endpoint with the LiteLLM Proxy Server
- Modify the config.yaml - model_list:
 - model_name: my-model
 litellm_params:
 model: nvidia_nim/<your-model-name> # add nvidia_nim/ prefix to route as Nvidia NIM provider
 api_key: api-key # api key to send your model
- Start the proxy - $ litellm --config /path/to/config.yaml
- Send Request to LiteLLM Proxy Server - OpenAI Python v1.0.0+
- curl
 - import openai
 client = openai.OpenAI(
 api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
 base_url="http://0.0.0.0:4000" # litellm-proxy-base url
 )
 response = client.chat.completions.create(
 model="my-model",
 messages = [
 {
 "role": "user",
 "content": "what llm are you"
 }
 ],
 )
 print(response)- curl --location 'http://0.0.0.0:4000/chat/completions' \
 --header 'Authorization: Bearer sk-1234' \
 --header 'Content-Type: application/json' \
 --data '{
 "model": "my-model",
 "messages": [
 {
 "role": "user",
 "content": "what llm are you"
 }
 ],
 }'
Supported Models - 💥 ALL Nvidia NIM Models Supported!
We support ALL nvidia_nim models, just set nvidia_nim/ as a prefix when sending completion requests
| Model Name | Function Call | 
|---|---|
| nvidia/nemotron-4-340b-reward | completion(model="nvidia_nim/nvidia/nemotron-4-340b-reward", messages) | 
| 01-ai/yi-large | completion(model="nvidia_nim/01-ai/yi-large", messages) | 
| aisingapore/sea-lion-7b-instruct | completion(model="nvidia_nim/aisingapore/sea-lion-7b-instruct", messages) | 
| databricks/dbrx-instruct | completion(model="nvidia_nim/databricks/dbrx-instruct", messages) | 
| google/gemma-7b | completion(model="nvidia_nim/google/gemma-7b", messages) | 
| google/gemma-2b | completion(model="nvidia_nim/google/gemma-2b", messages) | 
| google/codegemma-1.1-7b | completion(model="nvidia_nim/google/codegemma-1.1-7b", messages) | 
| google/codegemma-7b | completion(model="nvidia_nim/google/codegemma-7b", messages) | 
| google/recurrentgemma-2b | completion(model="nvidia_nim/google/recurrentgemma-2b", messages) | 
| ibm/granite-34b-code-instruct | completion(model="nvidia_nim/ibm/granite-34b-code-instruct", messages) | 
| ibm/granite-8b-code-instruct | completion(model="nvidia_nim/ibm/granite-8b-code-instruct", messages) | 
| mediatek/breeze-7b-instruct | completion(model="nvidia_nim/mediatek/breeze-7b-instruct", messages) | 
| meta/codellama-70b | completion(model="nvidia_nim/meta/codellama-70b", messages) | 
| meta/llama2-70b | completion(model="nvidia_nim/meta/llama2-70b", messages) | 
| meta/llama3-8b | completion(model="nvidia_nim/meta/llama3-8b", messages) | 
| meta/llama3-70b | completion(model="nvidia_nim/meta/llama3-70b", messages) | 
| microsoft/phi-3-medium-4k-instruct | completion(model="nvidia_nim/microsoft/phi-3-medium-4k-instruct", messages) | 
| microsoft/phi-3-mini-128k-instruct | completion(model="nvidia_nim/microsoft/phi-3-mini-128k-instruct", messages) | 
| microsoft/phi-3-mini-4k-instruct | completion(model="nvidia_nim/microsoft/phi-3-mini-4k-instruct", messages) | 
| microsoft/phi-3-small-128k-instruct | completion(model="nvidia_nim/microsoft/phi-3-small-128k-instruct", messages) | 
| microsoft/phi-3-small-8k-instruct | completion(model="nvidia_nim/microsoft/phi-3-small-8k-instruct", messages) | 
| mistralai/codestral-22b-instruct-v0.1 | completion(model="nvidia_nim/mistralai/codestral-22b-instruct-v0.1", messages) | 
| mistralai/mistral-7b-instruct | completion(model="nvidia_nim/mistralai/mistral-7b-instruct", messages) | 
| mistralai/mistral-7b-instruct-v0.3 | completion(model="nvidia_nim/mistralai/mistral-7b-instruct-v0.3", messages) | 
| mistralai/mixtral-8x7b-instruct | completion(model="nvidia_nim/mistralai/mixtral-8x7b-instruct", messages) | 
| mistralai/mixtral-8x22b-instruct | completion(model="nvidia_nim/mistralai/mixtral-8x22b-instruct", messages) | 
| mistralai/mistral-large | completion(model="nvidia_nim/mistralai/mistral-large", messages) | 
| nvidia/nemotron-4-340b-instruct | completion(model="nvidia_nim/nvidia/nemotron-4-340b-instruct", messages) | 
| seallms/seallm-7b-v2.5 | completion(model="nvidia_nim/seallms/seallm-7b-v2.5", messages) | 
| snowflake/arctic | completion(model="nvidia_nim/snowflake/arctic", messages) | 
| upstage/solar-10.7b-instruct | completion(model="nvidia_nim/upstage/solar-10.7b-instruct", messages) |