Triton Inference Server
LiteLLM supports Embedding Models on Triton Inference Servers
Usage
- SDK
- PROXY
Example Call
Use the triton/ prefix to route to triton server
from litellm import embedding
import os
response = await litellm.aembedding(
    model="triton/<your-triton-model>",                                                       
    api_base="https://your-triton-api-base/triton/embeddings", # /embeddings endpoint you want litellm to call on your server
    input=["good morning from litellm"],
)
- Add models to your config.yaml - model_list:
 - model_name: my-triton-model
 litellm_params:
 model: triton/<your-triton-model>"
 api_base: https://your-triton-api-base/triton/embeddings
- Start the proxy - $ litellm --config /path/to/config.yaml --detailed_debug
- Send Request to LiteLLM Proxy Server - OpenAI Python v1.0.0+
- curl
 - import openai
 from openai import OpenAI
 # set base_url to your proxy server
 # set api_key to send to proxy server
 client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
 response = client.embeddings.create(
 input=["hello from litellm"],
 model="my-triton-model"
 )
 print(response)- --headeris optional, only required if you're using litellm proxy with Virtual Keys- curl --location 'http://0.0.0.0:4000/embeddings' \
 --header 'Content-Type: application/json' \
 --header 'Authorization: Bearer sk-1234' \
 --data ' {
 "model": "my-triton-model",
 "input": ["write a litellm poem"]
 }'